VARIOUS FORMS OF DROP FRACTIONATION IN
SHOCK WAVES AND THEIR SPECIAL CHARACTERISTICS

B. E. Gel'fand, 8. A. Gubin, UDC 532.529.6
and S. M. Kogarko

The principal forms of drop fractionation behind shock waves are considered; empirical
relationships are established for the most important parameters of the fractionation
process.

Damage suffered by the surfaces of turbine blades or supersonic aircraft in gas —liquid media, the
transient and explosive combustion of fuel in gas ~liquid systems, and the relaxational interaction of pres-
sure waves with two-phase systems are frequently determined by the character of the drop-fractionation
process. The most important parameters in the fractionation or break-up process are the critical con-
ditions corresponding to the development of various forms of fractionation, the fractionation time, and
the spectrum of the particles created after the damage has occurred. Fractionation processes have been
studied by a number of authors over the last few years, and many theoretical and experimental papers have
been written on this subject. Analysis shows that the process of drop fractionation cannot be given any
adequate theoretical description at the present time. The only feature capable of being established theo-
retically is the quantitative value of the rupture criterion We* ~ 5-8 [1-5]. No useful information regard-
ing the times and varieties of the fractionation process has yet been obtained as a result of theoretical
investigations, although a number of attempts have been made [4, 5].

An idea as to the dynamics of drop breakdown and the parameters chiefly influencing these may be
obtained experimentally. It was shown in [6, 7] that for small supercritical Weber numbers the breakdown
of a drop took place by way of the blowing out of a thin film of liquid in the center {"parachute" breakdown).
For large Weber numbers We > 500 the breakdown of the drop involves the separation of the liquid boundary
layer [8-10]. The question as to the breakdown of drops in the intermediate range of Weber numbers We*
<We < 500 has never been resolved. An analysis of transient processes may indicate the reasons for the
appearance of any particular form of drop breakdown. Another important aspect is that of proving the
universality of the criteria and experimental relationships employed over 2 wide range of variation of the
parameters of a two-phase flow. Existing data mainly relate to drop fractionation at ambient pressures of
1073 to 30 atm, the shock wave Mach numbers M ranging from 1.1 to ~5 and the Reynolds numbers lying in
the range 10 < Re < 10% The range of drop sizes for which most of the experiments were conducted was
extremely narrow: d ~ 0.2-2 mm. In the present investigation we sought to extend this range of drop sizes.

Results of the Experiments. The characteristics of drop breakdown in shock waves were studied in 2
shock tube of rectangular cross section. The parameters of the waves (velocity and intensity) were deter-
mined by means of piezoelectric pressure sensors. The drops were photographed on a stationary film using
a pulsed light source connected at a particular instant of time. As subject for study we used water and
kerosene drops from 80 i to 1 mm in size. The error in measuring the velocity of the shock waves was
~10% and the error in measuring the drop size ~6%.

Figure 1 shows a series of photographs of a water drop 500 p in size breaking up in a gas flow behind
a wave with a Mach number of M = 1.09; the Weber and Reynolds numbers are, respectively, We = 12 and
Re = 1500. The photographs of Fig. 1, Ia-e were taken at the instants 0, 320, 450, 560, and 900 usec after
the wave had encountered the drop. In these pictures we see the principal characteristics of the "para-
chute” breakdown of the drops. During the first 500 usec the drop deforms into a disk, then a thin liquid
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- - . Let us take the dimensionless time t* = ttj! as
g f : 'F" ¢ . tfe. defining parameter. Here ty = dgpof*(pu?)="5. At the
¢ . % : instant of time t* = 1.5 the greatest transverse defor-
. mation of the drop d* = ddj! =~ 2 is achieved. At the
@ ‘ Q eﬁv same time a thin film is blown out. Rupture of the film
A b ¢ d occurs at t* =~ 2.3. The liquid torus exists in the gas
flow for a period t* ~ 2,3-3.5. At a time t* ~ 3.5-4
the breakdown of the drop ends and the drop is able
to move through a distance x =~ 20 d,.

tionation process may be regarded as completed.

Fig. 1. Photographs of drops breaking up.

Figure 2 shows the size distribution of the number of drops obtained in the break-up process. The
vertical axis gives the relative quantity n* = njn~! and the horizontal axis gives d* = did;? in which dj is the
size of the drops belonging to the i-th group, For measuring the spectrum the microdrops were divided
into dimensional groups with a step of 20 u. It was assumed that the drops inside each group had a constant
diameter of dj. The dimensions of the original drops d; = 0.5 mm (curve 1) and d; = 0.9 mm (curve 2). We
see from Fig. 2 that two groups may be distinguished in the spectrum: large and small. The small drops
have a size of 0.1 d, and are obtained after break-up of the thin film; the large drops (0.2-0.3)d, in size are
formed when the torus breaks up. Some 70% of the mass of the original drop goes into the large drops.

The "parachute” type of drop fractionation occurs in the range of Weber numbers We* < We < 15 for kero-
sene and water drops with a dimension of d; = 80-1000 u.

Increasing the Weber number to values exceeding We; ~ 15 leads to a change in the character of the
fractionation process. Figure 1, II illustrates the rupture of a water drop 1 mm in size. The Weber number
is We = 33 and the Reynolds number Re = 4000. Figure 1, IIa-h indicate the state of the drop at the instants
of time 0, 200, 330, 630, 670, 1100, 1800, and 1950 usec after the wave has met the drop. For 1000 usec
deformation of the original particle takes place, then several thin films are formed in the drop. After the
rupture of the films the drop acquires an indefenite form and breaks up into filaments which transform into
fine drops. As the drop undergoes deformation, the greatest cross section of d* ~ 2.3 is attained at the
instant of time t* ~ 1.5. The fractionation is completed at the instant t* =~ 4-5, and the drop is able to move
through a distance x =~ 25d;. In the fractionated spectrum drops of size 0.1d; tend to predominate. The
foregoing phenomena occur over a narrow range of Weber numbers. A slight increase in the rate of gas
flow leads to the appearance of a new type of fractionation process. Figure 1, III illustrates the break-up
of a kerosene drop dy = 1.1 mm in size in a gas flow with a Weber number We = 57 and a Reynolds number
Re = 3050. The state of the drop is illustrated for the instants of time 0, 130, 215, 280, 360, 710, 860,
970, and 1250 psec. A characteristic feature of the drop deformation process is the formation of a sharp
edge along the periphery of the drop. A similar effect (through poorly defined) occurs for a water drop
at times 200-300 usec, as indicated in Fig. 1, Ilc and d. The surface tension of water is three times greater
than that of kerosene. The radius of curvature of the sharp edge is therefore smaller for water. It is
highly likely that the form of the sharp edge on the equator of the drop is a consequence of the formation
of a boundary layer in the liquid owing to the existence of frictional forces at the phase interface. The
growth of the boundary layer and the deformation of the drop take place at the same time, After reaching
the maximum stage of deformation a liquid film starts peeling from the surface of the drop; the film breaks
up owing to its instability on acceleration in the gas flow. The remaining unbroken part of the drop assumes
a random shape and decomposes after t =~ 2000 usec, i.e., t* = 4-5,

An increase in the relative velocity of the gas and the drops leads to an intensification of the fore-
going processes. Figure 1, IV shows the rupture of a water drop dy = 1 mm in size for a Weber number
We = 90 and a Reynolds number Re = 3600. The photographs of Fig. 1, IVa~d were taken at the moments of
time 0, 270, 470, and 1160 psec. In view of the large relative velocity the rupture of the film takes place
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Fig. 2. Size distribution of the drops.

Fig. 3. Deformation and displacement of the drops breaking up.

Fig. 4. Times corresponding to deformation, boundary-layer formation, and instability-wave growth as
functions of the Weber number,

close to the surface of the drop, while the fractionation process appears as a separation of the micro-
drops from the original drop. The maximum deformation of the drops d* = 2.9 occurs at time t* = 1,5,
Complete breakdown of the drop occurs at t* ~ 5 at a distance of x ~ 30d,. After the detachment of the thin
liquid film,drops 0.1d; in size are created. The greater part of the drop breaks up later as a result of the
undulating distortion of the "windward" surface, 0.15d, particles being formed. The break-up of the liquid
drops with the separation of the thin film occurs for Weber numbers of Wey ~ 40-60. Reducing the diam~
eter of the drops leads to a reduction in the Weber number at which the break-up of the drop is accom-
panied by peeling of the liquid film. The results of the experiments and the data presented in [8-10] enable
us to derive simple analytical relationships for the time changes in the cross section and movement of the
drops, and also to determine the instants corresponding to the initial and final break-up of the drops in the
Weber number range We* < We < 10%, The inducation time of the fractioning process may be calculated
from the equation 7j = 1.5d, pd-*(pu?) =% logWe) 0?5, The complete break-up of the drops occurs in a time
Tg= 5dy pFP (0u?)=0-5 (logWe) -1, The time dependence of the drop deformation and the displacement of
the drops during break-up are illustrated in Fig. 3. Here the vertical axis represents the degree of defor-
mationofthe drop d* and the displacement of the drop x* = xdy 1. while the horizontal axis represents the
dimensionless time t*. Curve 1 shows the degree of deformation of the drop, and curve 4 its displacement
during "parachute"” break-up. Curves 2 and 5 correspond to the deformation and displacement of the drop
in random break-up, curves 3 and 6 to the break-up of the drop involving the separation of the surface
layer of liguid.

The change taking place in the transverse dimension of the drop with time may be expressed in the
form d* = 1 + (1 —-We*We~Y)t*. The relationship in question is valid from Weber numhers of We* to We
=2 104, Reynolds numbers of Re = 400 to Re = 104, drop sizes of dy = 80 ¢ to dy = 3 mm, shock-wave Mach
numbers of M = 1,05 to M = 4, and for water, kerosene, alcohol, and heptane drops. The equation holds
true within the time range 0 < t* < 1.5,

The dimensionless displacement of the drops may be written in the following way: x = Cp0.375 t*.
Comparing this equation with the experimental data, we find the resistance coefficient of the disintegrating
drops Cpy. When the drops breaks up on the "parachute” principle the resistance coefficient Cp =~ 1.6; for
chaotic disintegration it is 1.9, and for break-up with peeling of the surface layer of liquid 2.2. A value
of Cp ~ 38 was given in [9, 10] for Reynolds numbers of Re > 10%. The generalized relationship for cal-
culating the resistance coefficients will be Cpy =~ 0.26 Rel-%5,

 Discussion of Results. In the range of variation of Weber numbers 5 < We < 300 there are at least
three forms of drop break-up characterized by different rates of drop deformation, different mechanisms
of drop motion under the influence of the gas flow, and different spectra of the microdrops formed by the
disintegration of the original drop. Hence apart from the critical Weber number We* reflecting the resis-
tance of the drop to the action of the gas flow there should clearly be two further critical conditions which
determine the transition from one form of drop break-up to another.
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The reasons for the existence of several types of break-up are to be linked with the complex com-
bined action of the gas flow on the drop. Let us analyze the principal phenomena accompanying the action
of the gas flow on the drop. Owing to the flow of gas around the drop a pressure distribution is created
around the latter, with a minimum on the equator. The pressure distribution is the principal reason for
the deformation of the drop. The flow of gas over the surface of the drop sets the surface layer of liquid in
motion and a boundary layer is formed in the liquid. Finally the drop acquires an acceleration in the flow
of gas; on the windward side of the drop this is directed from the gas into the liquid, which promotes the
development of Taylor instability at the phase interface. Only due allowance for the combined development
of all these phenomena enables us to understand every feature of the drop break-up process.

Each of the phenomena indicates possesses characteristic time and scale parameters, We shall char-
acterize the drop deformation process by the degree of deformation d* and the deformation time 7. We
define the formation of the boundary layer of liquid by its thickness 6 and time of formation 7. We char-
acterize the instability of the phase interface by the wavelength A and the time of development of the in-
stability 7). If for a certain mode of flow around the drop it so happens that one of the phenomena takes
place more rapidly than all the others, then the break-up of the drop will be due to the fastest process.
Thus it may be found that the depth of the boundary layer 6 or the wavelength of the instability A exceed the

. dimensions of the drop d,, and for such dimensions of the boundary layer, or for such wavelengths, neither
the formation of the boundary layer nor the instability of the interface will play any part in the breakdown
of the drops.

The deformation of a drop in a gas flow was studied in [1-4, 7]. The characteristic time required to
attain the critical deformation is t* =~ 1.4, while the maximum degree of deformation d* =~ 2.8, The time
required to form the boundary layer in the liquid 'rsto =74 ~ 1.2 is known from [8, 9]. The depth of the
boundary layer at the drop is defined as 6* = 25d;! = 3.44 (pfuf)o % (op?~0 2B Re™5, The size of the drop
0.5d; and the thickness of the boundary layer 6 are equal for Weber numbers of We = 50 Lp . For drops
of diameter d, = 50-1000 p this corresponds to Weber numbers We < 5,

The condition for the separation of the boundary layer of liquid from the drop may be found by equa-
ting the force of the dynamic gas-pressure head (which causes the formation and peeling of the boundary
layer of liquid) to the force of surface tension in a layer of thickness 6 which prevents the separation of
the boundary layer of liquid 0.5 8 pu® =261, where g ~ 0.3 is the coefflclent of wind resistance. Solving
the resultant equation we come to the relationship We = 1.5 (pfu2)° -2 (pu )~0-5Re5, The separation of the
boundary layer of liquid from kerosene drops at p, = 1 atm takes place on satisfying the condition We
> 0.8 Re’%, in agreement with the conclusions of [12]. We express the Weber number in the form We
= 0,5Re? pfuz (pu%)‘1 Lp~! and obtain the condition for the separation of the surface layer of liquid We
= 2.5 Lp0.33, Experimental data confirm the validity of this relationship.

The development of the Taylor instability on the surface of an accelerated drop was analyzed in
[8, 14, 15]. The minimum instability wavelength is given by Am = 2m¢% S(pr)_o ®, The acceleration of the
drop may be found by using the experimental resistance coefficient C1y =~ 1.5. We then obtain 7‘m }\md
= (17 We %5, The length of the unstable wave on the surface of the drop is greater than the diameter of
the drop for We = 17, As indicated in [15] the time of development of the instability for large Bond num-
bers is 73 = Taty? ~ 22 Bo~"*%, The Bond number is uniquely expressed in terms of the Weber number and
the characteristic development time of the acceleration wave 73 ~ 22We -2,

A comparison of the scale parameters for the three foregoing processes indicates that in the range of
Weber number We < We* break-up is impossible, since A >dy, § = dy, d* = 1. In the range We* < We
< Weik = 15 the condition d* >1 is satisfied, and this defines the possibility of the deformation process. In
the range of Weber numbers We] < We < 2.5 Lp’-* the relationships A < d,, d* > 1 is satisfied, i.e., the
processes of deformation and instability development are allowed. The relationships A < d,, 6* < 0.5,
d* > 1 are valid when We > 2.5 Lp®3, The satisfaction of the foregoing inequalities defines the possibility
of the simultaneous occurrence of all three processes. A comparison between the characteristic develop-
ment times of deformation, boundary-layer formation, and instability development are illustrated in Fig, 4,
The vertical axis indicates the dimensionless time t*, the horizontal axis the logarithm of the Weber num-~
ber. Curves 1 and 2 describe the change in the time corresponding to the beginning and end of the drop
break-up with increasing Weber number; curves 6, We = 5; 7, We;k ~ 15; 8, We;< ~ 2.5 Lp"'33 (for kerosene
drops with dj = 1 mm) divide the range of Weber numbers into three parts. Straight lines 3 and 4 show the
time required to reach the critical stage of drop deformation 7* and the time required to form the boundary
layer of liquid ’rg. Curve 5 corresponds to the time of development of the acceleration wave T;. In the

880



range of Weber numbers 5 < We < 15 the time to the onset of drop break-up is no shorter than the time
required to reach critical deformation. The reason for the break-up of the drop is its continuous deforma-
tion.

In the Weber number range 15 < We < 2.5 Lp®3 break-up of the drop becomes possible as a result
of the deformation and instability of the windward surface of the drop. The closeness of the characteristic
deformation time 7* to the induction time 7{ shows that the onset of break-up is associated with the attach-
ment of the critical stage of deformation. At the final stage of break-up the instability of the windward side
of the drop is the important feature.

In the range of Weber numbers We > 2.5 Lp%33 the induction time is close to the time of formation of
the boundary layer in the liquid. The time required to reach the critical stage of deformation and the time
for the development of the acceleration wave are shorter than the time required for complete drop break-
up. The break-up of the drop starts on account of the detachment of the surface layer of liquid; however,
the mass of the drop then diminishes by no more than 20% over a time t* ~ 2,5-3 [8]. The main reason for
the break-up of the drop is deformation and the development of instability on the windward side of the drop.
The maximum rate of break-up of the drop in the time t* ~ 2-3 [10, 16] corresponds to the instant at which
the amplitude of the acceleration waves becomes comparable with the minimum dimensions of the flattened
drop. In Fig. 1 this instant of time is masked by the cloud of microdrops formed in the breakdown of the
peeled surface layer of liquid. The characteristic time for the development of instability in the range of
Weber numbers 2-10% < We < 2-10%is 1.8 < ’T; < 3.5 [10, 16, 17], With increasing Weber number the char-
acteristic time for the development of the acceleration waves diminishes. For Weber numbers We > 2+ 10°
the breakdown of the drop will probably be mainly caused by the instability of the windward surface of the
drop. Under these conditions the characteristic times for the development of deformation and the forma-
tion of the boundary liquid layer are longer than the time of development of the acceleration waves [14].

Thus the existence of different forms of drop break-up over a wide range of variation of the Weber
numbers is determined by the combined action of deformation, boundary-layer formation in the liquid,
and the development of instability on the windward surface of the drop. The characteristics of each form
of break-up depend on the dynamics of one such process or of the whole set. A more detailed understanding
of the mechanism of drop break-up may be obtained by analyzing the combined action of a large number of
processes accompanying the break-up of the drop (for example, allowing for the circulation of the liguid
in the drop, eddy motion behind the drop, etc).

NOTATION
u is the gas velocity;
I is the gas density;
i is the gas viscosity;
¥ is the surface tension of the liguid;
dg is the initial drop diameter;
We = pu’d,(2¢)™" is the Weber number;
Re = pudypu~t is the Reynolds number;
M is the Mach number;
Pt is the density of liquid;
X is the distance;
nj is the number of drops of size dj;
Cp is the resistance (drag) coefficient;
t is the time;
Tg is the time of formation of the boundary layer;
A is the wavelength;
T is the time of wave development;
oy is the viscosity of the liquid;
Lp = dopgt / 1} is the Laplace number;
Py is the gas pressure;
a is the acceleration of the drop;

Bo = 0.25 ppadiy~t is the Bond number.
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